Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78.775
1.
PLoS Pathog ; 20(5): e1012157, 2024 May.
Article En | MEDLINE | ID: mdl-38723104

Circadian rhythms are intrinsic 24-hour oscillations found in nearly all life forms. They orchestrate key physiological and behavioral processes, allowing anticipation and response to daily environmental changes. These rhythms manifest across entire organisms, in various organs, and through intricate molecular feedback loops that govern cellular oscillations. Recent studies describe circadian regulation of pathogens, including parasites, bacteria, viruses, and fungi, some of which have their own circadian rhythms while others are influenced by the rhythmic environment of hosts. Pathogens target specific tissues and organs within the host to optimize their replication. Diverse cellular compositions and the interplay among various cell types create unique microenvironments in different tissues, and distinctive organs have unique circadian biology. Hence, residing pathogens are exposed to cyclic conditions, which can profoundly impact host-pathogen interactions. This review explores the influence of circadian rhythms and mammalian tissue-specific interactions on the dynamics of pathogen-host relationships. Overall, this demonstrates the intricate interplay between the body's internal timekeeping system and its susceptibility to pathogens, which has implications for the future of infectious disease research and treatment.


Circadian Clocks , Circadian Rhythm , Host-Pathogen Interactions , Circadian Clocks/physiology , Animals , Host-Pathogen Interactions/physiology , Humans , Circadian Rhythm/physiology
2.
Synapse ; 78(3): e22291, 2024 May.
Article En | MEDLINE | ID: mdl-38733105

Spinal serotonin enables neuro-motor recovery (i.e., plasticity) in patients with debilitating paralysis. While there exists time of day fluctuations in serotonin-dependent spinal plasticity, it is unknown, in humans, whether this is due to dynamic changes in spinal serotonin levels or downstream signaling processes. The primary objective of this study was to determine if time of day variations in spinal serotonin levels exists in humans. To assess this, intrathecal drains were placed in seven adults with cerebrospinal fluid (CSF) collected at diurnal (05:00 to 07:00) and nocturnal (17:00 to 19:00) intervals. High performance liquid chromatography with mass spectrometry was used to quantify CSF serotonin levels with comparisons being made using univariate analysis. From the 7 adult patients, 21 distinct CSF samples were collected: 9 during the diurnal interval and 12 during nocturnal. Diurnal CSF samples demonstrated an average serotonin level of 216.6 ± $ \pm $ 67.7 nM. Nocturnal CSF samples demonstrated an average serotonin level of 206.7 ± $ \pm $ 75.8 nM. There was no significant difference between diurnal and nocturnal CSF serotonin levels (p = .762). Within this small cohort of spine healthy adults, there were no differences in diurnal versus nocturnal spinal serotonin levels. These observations exclude spinal serotonin levels as the etiology for time of day fluctuations in serotonin-dependent spinal plasticity expression.


Circadian Rhythm , Serotonin , Humans , Serotonin/cerebrospinal fluid , Male , Adult , Female , Circadian Rhythm/physiology , Middle Aged , Spinal Cord/metabolism , Chromatography, High Pressure Liquid , Aged
3.
J Zhejiang Univ Sci B ; 25(5): 389-409, 2024 May 15.
Article En, Zh | MEDLINE | ID: mdl-38725339

The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.


Insecta , Neuropeptides , Signal Transduction , Animals , Neuropeptides/metabolism , Neuropeptides/physiology , Insecta/physiology , Insecta/metabolism , Circadian Rhythm/physiology , Feeding Behavior , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Energy Metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731934

Adult bones are continuously remodeled by the balance between bone resorption by osteoclasts and subsequent bone formation by osteoblasts. Many studies have provided molecular evidence that bone remodeling is under the control of circadian rhythms. Circadian fluctuations have been reported in the serum and urine levels of bone turnover markers, such as digested collagen fragments and bone alkaline phosphatase. Additionally, the expressions of over a quarter of all transcripts in bones show circadian rhythmicity, including the genes encoding master transcription factors for osteoblastogenesis and osteoclastogenesis, osteogenic cytokines, and signaling pathway proteins. Serum levels of calcium, phosphate, parathyroid hormone, and calcitonin also display circadian rhythmicity. Finally, osteoblast- and osteoclast-specific knockout mice targeting the core circadian regulator gene Bmal1 show disrupted bone remodeling, although the results have not always been consistent. Despite these studies, however, establishing a direct link between circadian rhythms and bone remodeling in vivo remains a major challenge. It is nearly impossible to repeatedly collect bone materials from human subjects while following circadian changes. In addition, the differences in circadian gene regulation between diurnal humans and nocturnal mice, the main model organism, remain unclear. Filling the knowledge gap in the circadian regulation of bone remodeling could reveal novel regulatory mechanisms underlying many bone disorders including osteoporosis, genetic diseases, and fracture healing. This is also an important question for the basic understanding of how cell differentiation progresses under the influence of cyclically fluctuating environments.


Bone Remodeling , Circadian Rhythm , Bone Remodeling/genetics , Animals , Circadian Rhythm/physiology , Circadian Rhythm/genetics , Humans , Osteoblasts/metabolism , Osteogenesis/genetics , Osteoclasts/metabolism , Gene Expression Regulation , Bone and Bones/metabolism
5.
Front Public Health ; 12: 1283543, 2024.
Article En | MEDLINE | ID: mdl-38741905

Object: We explored the circadian preferences of non-shift workers (non-SWs) and various types of shift workers (SWs), and the associations of these preferences with sleep and mood. Methods: In total, 4,561 SWs (2,419 women and 2,142 men aged 37.00 ± 9.80 years) and 2,093 non-SWs (1,094 women and 999 men aged 37.80 ± 9.73 years) completed an online survey. Of all SWs, 2,415 (1,079 women and 1,336 men aged 37.77 ± 9.96 years) reported regularly rotating or fixed schedules ("regular SWs"), and 2,146 (1,340 women and 806 men aged 36.12 ± 9.64 years) had irregular schedules ("irregular SWs"). Of the regular SWs, 2,040 had regularly rotating schedules, 212 had fixed evening schedules, and 163 had fixed night schedules. All participants completed the Morningness-Eveningness Questionnaire (MEQ) exploring circadian preferences, the short form of the Center for Epidemiological Studies-Depression Scale (CES-D) evaluating depression, the Insomnia Severity Index (ISI), and the Epworth Sleepiness Scale (ESS). Results: Compared to non-SWs, SWs had lower MEQ scores, i.e., more eveningness, after controlling for age, gender, income, occupation, and weekly work hours (F = 87.97, p < 0.001). Irregular SWs had lower MEQ scores than regular SWs (F = 50.89, p < 0.001). Among regular SWs, the MEQ scores of fixed evening and fixed night SWs were lower than those of regularly rotating SWs (F = 22.42, p < 0.001). An association between the MEQ and ESS scores was apparent in non-SWs (r = -0.85, p < 0.001) but not in SWs (r = 0.001, p = 0.92). Conclusion: SWs exhibited more eveningness than non-SWs; eveningness was particularly prominent in SWs with irregular or fixed evening/night shifts. Eveningness was associated with sleepiness only in non-SWs, but not in SWs.


Affect , Circadian Rhythm , Sleep , Work Schedule Tolerance , Humans , Male , Female , Adult , Sleep/physiology , Surveys and Questionnaires , Affect/physiology , Circadian Rhythm/physiology , Work Schedule Tolerance/physiology , Work Schedule Tolerance/psychology , Middle Aged , Shift Work Schedule/statistics & numerical data , Depression
6.
Front Endocrinol (Lausanne) ; 15: 1328139, 2024.
Article En | MEDLINE | ID: mdl-38742195

The topic of human circadian rhythms is not only attracting the attention of clinical researchers from various fields but also sparking a growing public interest. The circadian system comprises the central clock, located in the suprachiasmatic nucleus of the hypothalamus, and the peripheral clocks in various tissues that are interconnected; together they coordinate many daily activities, including sleep and wakefulness, physical activity, food intake, glucose sensitivity and cardiovascular functions. Disruption of circadian regulation seems to be associated with metabolic disorders (particularly impaired glucose tolerance) and cardiovascular disease. Previous clinical trials revealed that disturbance of the circadian system, specifically due to shift work, is associated with an increased risk of type 2 diabetes mellitus. This review is intended to provide clinicians who wish to implement knowledge of circadian disruption in diagnosis and strategies to avoid cardio-metabolic disease with a general overview of this topic.


Cardiovascular Diseases , Circadian Rhythm , Metabolic Diseases , Humans , Circadian Rhythm/physiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/physiopathology , Metabolic Diseases/physiopathology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/metabolism , Chronobiology Disorders/physiopathology , Chronobiology Disorders/complications
7.
JMIR Public Health Surveill ; 10: e55211, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713911

BACKGROUND: The relationship between 24-hour rest-activity rhythms (RARs) and risk for dementia or mild cognitive impairment (MCI) remains an area of growing interest. Previous studies were often limited by small sample sizes, short follow-ups, and older participants. More studies are required to fully explore the link between disrupted RARs and dementia or MCI in middle-aged and older adults. OBJECTIVE: We leveraged the UK Biobank data to examine how RAR disturbances correlate with the risk of developing dementia and MCI in middle-aged and older adults. METHODS: We analyzed the data of 91,517 UK Biobank participants aged between 43 and 79 years. Wrist actigraphy recordings were used to derive nonparametric RAR metrics, including the activity level of the most active 10-hour period (M10) and its midpoint, the activity level of the least active 5-hour period (L5) and its midpoint, relative amplitude (RA) of the 24-hour cycle [RA=(M10-L5)/(M10+L5)], interdaily stability, and intradaily variability, as well as the amplitude and acrophase of 24-hour rhythms (cosinor analysis). We used Cox proportional hazards models to examine the associations between baseline RAR and subsequent incidence of dementia or MCI, adjusting for demographic characteristics, comorbidities, lifestyle factors, shiftwork status, and genetic risk for Alzheimer's disease. RESULTS: During the follow-up of up to 7.5 years, 555 participants developed MCI or dementia. The dementia or MCI risk increased for those with lower M10 activity (hazard ratio [HR] 1.28, 95% CI 1.14-1.44, per 1-SD decrease), higher L5 activity (HR 1.15, 95% CI 1.10-1.21, per 1-SD increase), lower RA (HR 1.23, 95% CI 1.16-1.29, per 1-SD decrease), lower amplitude (HR 1.32, 95% CI 1.17-1.49, per 1-SD decrease), and higher intradaily variability (HR 1.14, 95% CI 1.05-1.24, per 1-SD increase) as well as advanced L5 midpoint (HR 0.92, 95% CI 0.85-0.99, per 1-SD advance). These associations were similar in people aged <70 and >70 years, and in non-shift workers, and they were independent of genetic and cardiovascular risk factors. No significant associations were observed for M10 midpoint, interdaily stability, or acrophase. CONCLUSIONS: Based on findings from a large sample of middle-to-older adults with objective RAR assessment and almost 8-years of follow-up, we suggest that suppressed and fragmented daily activity rhythms precede the onset of dementia or MCI and may serve as risk biomarkers for preclinical dementia in middle-aged and older adults.


Cognitive Dysfunction , Dementia , Rest , Humans , Female , Male , Cognitive Dysfunction/epidemiology , Middle Aged , Aged , Dementia/epidemiology , Prospective Studies , Rest/physiology , Adult , United Kingdom/epidemiology , Actigraphy , Risk Factors , Circadian Rhythm/physiology
8.
Nat Commun ; 15(1): 3840, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714698

As the circadian clock regulates fundamental biological processes, disrupted clocks are often observed in patients and diseased tissues. Determining the circadian time of the patient or the tissue of focus is essential in circadian medicine and research. Here we present tauFisher, a computational pipeline that accurately predicts circadian time from a single transcriptomic sample by finding correlations between rhythmic genes within the sample. We demonstrate tauFisher's performance in adding timestamps to both bulk and single-cell transcriptomic samples collected from multiple tissue types and experimental settings. Application of tauFisher at a cell-type level in a single-cell RNAseq dataset collected from mouse dermal skin implies that greater circadian phase heterogeneity may explain the dampened rhythm of collective core clock gene expression in dermal immune cells compared to dermal fibroblasts. Given its robustness and generalizability across assay platforms, experimental setups, and tissue types, as well as its potential application in single-cell RNAseq data analysis, tauFisher is a promising tool that facilitates circadian medicine and research.


Circadian Clocks , Circadian Rhythm , Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Circadian Rhythm/genetics , Circadian Clocks/genetics , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Skin/metabolism , Software , Fibroblasts/metabolism , Sequence Analysis, RNA/methods
9.
Int J Behav Nutr Phys Act ; 21(1): 51, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698447

BACKGROUND: There is a growing population of survivors of colorectal cancer (CRC). Fatigue and insomnia are common symptoms after CRC, negatively influencing health-related quality of life (HRQoL). Besides increasing physical activity and decreasing sedentary behavior, the timing and patterns of physical activity and rest over the 24-h day (i.e. diurnal rest-activity rhythms) could also play a role in alleviating these symptoms and improving HRQoL. We investigated longitudinal associations of the diurnal rest-activity rhythm (RAR) with fatigue, insomnia, and HRQoL in survivors of CRC. METHODS: In a prospective cohort study among survivors of stage I-III CRC, 5 repeated measurements were performed from 6 weeks up to 5 years post-treatment. Parameters of RAR, including mesor, amplitude, acrophase, circadian quotient, dichotomy index, and 24-h autocorrelation coefficient, were assessed by a custom MATLAB program using data from tri-axial accelerometers worn on the upper thigh for 7 consecutive days. Fatigue, insomnia, and HRQoL were measured by validated questionnaires. Confounder-adjusted linear mixed models were applied to analyze longitudinal associations of RAR with fatigue, insomnia, and HRQoL from 6 weeks until 5 years post-treatment. Additionally, intra-individual and inter-individual associations over time were separated. RESULTS: Data were available from 289 survivors of CRC. All RAR parameters except for 24-h autocorrelation increased from 6 weeks to 6 months post-treatment, after which they remained relatively stable. A higher mesor, amplitude, circadian quotient, dichotomy index, and 24-h autocorrelation were statistically significantly associated with less fatigue and better HRQoL over time. A higher amplitude and circadian quotient were associated with lower insomnia. Most of these associations appeared driven by both within-person changes over time and between-person differences in RAR parameters. No significant associations were observed for acrophase. CONCLUSIONS: In the first five years after CRC treatment, adhering to a generally more active (mesor) and consistent (24-h autocorrelation) RAR, with a pronounced peak activity (amplitude) and a marked difference between daytime and nighttime activity (dichotomy index) was found to be associated with lower fatigue, lower insomnia, and a better HRQoL. Future intervention studies are needed to investigate if restoring RAR among survivors of CRC could help to alleviate symptoms of fatigue and insomnia while enhancing their HRQoL. TRIAL REGISTRATION: EnCoRe study NL6904 ( https://www.onderzoekmetmensen.nl/ ).


Cancer Survivors , Circadian Rhythm , Colorectal Neoplasms , Exercise , Fatigue , Quality of Life , Rest , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/therapy , Male , Female , Middle Aged , Prospective Studies , Circadian Rhythm/physiology , Cancer Survivors/psychology , Aged , Longitudinal Studies , Surveys and Questionnaires
10.
Elife ; 122024 May 14.
Article En | MEDLINE | ID: mdl-38743049

The circadian clock enables anticipation of the day/night cycle in animals ranging from cnidarians to mammals. Circadian rhythms are generated through a transcription-translation feedback loop (TTFL or pacemaker) with CLOCK as a conserved positive factor in animals. However, CLOCK's functional evolutionary origin and mechanism of action in basal animals are unknown. In the cnidarian Nematostella vectensis, pacemaker gene transcript levels, including NvClk (the Clock ortholog), appear arrhythmic under constant darkness, questioning the role of NvCLK. Utilizing CRISPR/Cas9, we generated a NvClk allele mutant (NvClkΔ), revealing circadian behavior loss under constant dark (DD) or light (LL), while maintaining a 24 hr rhythm under light-dark condition (LD). Transcriptomics analysis revealed distinct rhythmic genes in wild-type (WT) polypsunder LD compared to DD conditions. In LD, NvClkΔ/Δ polyps exhibited comparable numbers of rhythmic genes, but were reduced in DD. Furthermore, under LD, the NvClkΔ/Δ polyps showed alterations in temporal pacemaker gene expression, impacting their potential interactions. Additionally, differential expression of non-rhythmic genes associated with cell division and neuronal differentiation was observed. These findings revealed that a light-responsive pathway can partially compensate for circadian clock disruption, and that the Clock gene has evolved in cnidarians to synchronize rhythmic physiology and behavior with the diel rhythm of the earth's biosphere.


Circadian Clocks , Circadian Rhythm , Animals , Circadian Rhythm/genetics , Circadian Clocks/genetics , Sea Anemones/genetics , Sea Anemones/physiology , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Photoperiod , Cnidaria/physiology , Cnidaria/genetics
11.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731986

Circadian clock and clock-controlled output pathways exert temporal control in diverse aspects of skeletal muscle physiology, including the maintenance of muscle mass, structure, function, and metabolism. They have emerged as significant players in understanding muscle disease etiology and potential therapeutic avenues, particularly in Duchenne muscular dystrophy (DMD). This review examines the intricate interplay between circadian rhythms and muscle physiology, highlighting how disruptions of circadian regulation may contribute to muscle pathophysiology and the specific mechanisms linking circadian clock dysregulation with DMD. Moreover, we discuss recent advancements in chronobiological research that have shed light on the circadian control of muscle function and its relevance to DMD. Understanding clock output pathways involved in muscle mass and function offers novel insights into the pathogenesis of DMD and unveils promising avenues for therapeutic interventions. We further explore potential chronotherapeutic strategies targeting the circadian clock to ameliorate muscle degeneration which may inform drug development efforts for muscular dystrophy.


Circadian Clocks , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Muscular Dystrophy, Duchenne/therapy , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Humans , Animals , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Circadian Rhythm
12.
PLoS One ; 19(5): e0302639, 2024.
Article En | MEDLINE | ID: mdl-38739639

Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcare expenditures, with anticipated escalation in the future. It is essential to classify HF patients into three groups based on their ejection fraction: reduced (HFrEF), mid-range (HFmEF), and preserved (HFpEF), such as for diagnosis, risk assessment, treatment choice, and the ongoing monitoring of heart failure. Nevertheless, obtaining a definitive prediction poses challenges, requiring the reliance on echocardiography. On the contrary, an electrocardiogram (ECG) provides a straightforward, quick, continuous assessment of the patient's cardiac rhythm, serving as a cost-effective adjunct to echocardiography. In this research, we evaluate several machine learning (ML)-based classification models, such as K-nearest neighbors (KNN), neural networks (NN), support vector machines (SVM), and decision trees (TREE), to classify left ventricular ejection fraction (LVEF) for three categories of HF patients at hourly intervals, using 24-hour ECG recordings. Information from heterogeneous group of 303 heart failure patients, encompassing HFpEF, HFmEF, or HFrEF classes, was acquired from a multicenter dataset involving both American and Greek populations. Features extracted from ECG data were employed to train the aforementioned ML classification models, with the training occurring in one-hour intervals. To optimize the classification of LVEF levels in coronary artery disease (CAD) patients, a nested cross-validation approach was employed for hyperparameter tuning. HF patients were best classified using TREE and KNN models, with an overall accuracy of 91.2% and 90.9%, and average area under the curve of the receiver operating characteristics (AUROC) of 0.98, and 0.99, respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm were the ones that contributed to the highest classification accuracy. The results pave the way for creating an automated screening system tailored for patients with CAD, utilizing optimal measurement timings aligned with their circadian cycles.


Electrocardiography , Heart Failure , Machine Learning , Stroke Volume , Ventricular Function, Left , Humans , Heart Failure/physiopathology , Heart Failure/diagnosis , Female , Male , Electrocardiography/methods , Aged , Ventricular Function, Left/physiology , Middle Aged , Circadian Rhythm/physiology , Support Vector Machine , Neural Networks, Computer
13.
Elife ; 132024 May 08.
Article En | MEDLINE | ID: mdl-38716806

Studies of the starlet sea anemone provide important insights into the early evolution of the circadian clock in animals.


Circadian Clocks , Sea Anemones , Animals , Biological Evolution , Circadian Clocks/physiology , Circadian Rhythm/physiology , Cnidaria/physiology , Sea Anemones/physiology
15.
Aging Clin Exp Res ; 36(1): 105, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713270

PURPOSE: Frailty and Circadian Syndrome (CircS) are prevalent among the elderly, yet the link between them remains underexplored. This study aims to examine the association between CircS and frailty, particularly focusing on the impact of various CircS components on frailty. MATERIALS AND METHODS: We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning 2007 to 2018. The 49-item Frailty Index (FI) was employed to assess frailty. To understand the prevalence of CircS in relation to frailty, we applied three multivariate logistic regression models. Additionally, subgroup and interaction analyses were performed to investigate potential modifying factors. RESULTS: The study included 8,569 participants. In fully adjusted models, individuals with CircS showed a significantly higher risk of frailty compared to those without CircS (Odds Ratio [OR] = 2.18, 95% Confidence Interval [CI]: 1.91-2.49, p < 0.001). A trend of increasing frailty risk with greater CircS component was observed (trend test p < 0.001). Age (p = 0.01) and race (p = 0.02) interactions notably influenced this association, although the direction of effect was consistent across subgroups. Sensitivity analysis further confirmed the strength of this relationship. CONCLUSION: This study identifies a strong positive correlation between CircS and frailty in the elderly. The risk of frailty escalates with an increasing number of CircS components. These findings highlight the intricate interplay between circadian syndrome and frailty in older adults, offering valuable insights for developing targeted prevention and intervention strategies.


Frailty , Nutrition Surveys , Humans , Cross-Sectional Studies , Male , Female , Frailty/epidemiology , Aged , United States/epidemiology , Middle Aged , Aged, 80 and over , Chronobiology Disorders/epidemiology , Chronobiology Disorders/physiopathology , Prevalence , Circadian Rhythm/physiology , Frail Elderly/statistics & numerical data , Risk Factors
16.
JCI Insight ; 9(9)2024 May 08.
Article En | MEDLINE | ID: mdl-38716727

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Transcriptome , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Circadian Rhythm/genetics , Organoids/drug effects , Circadian Clocks/genetics , Circadian Clocks/drug effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Adenocarcinoma/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Chronotherapy/methods
18.
J Pineal Res ; 76(4): e12956, 2024 May.
Article En | MEDLINE | ID: mdl-38695262

The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.


Circadian Rhythm , Glucose , Humans , Animals , Circadian Rhythm/physiology , Glucose/metabolism , Circadian Clocks/physiology , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
19.
J Hypertens ; 42(6): 1101-1104, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38690908

Isolated nocturnal hypertension (INHT), defined as nighttime elevated blood pressure (BP) with normal daytime BP assessed by ambulatory BP monitoring, is associated with higher cardiovascular morbidity and mortality. We hypothesized that an alteration in the circulating renin-angiotensin system (RAS) contributes to INHT development. We examined circulating levels of angiotensin (Ang) (1-7) and Ang II and ACE2 activity in 26 patients that met the INHT criteria, out of 50 that were referred for BP evaluation (62% women, 45 ±â€Š16 years old). Those with INHT were older, had a higher BMI, lower circulating Ang-(1-7) (P = 0.002) and Ang II levels (P = 0.02) and no change in ACE2 activity compared to those normotensives. Nighttime DBP was significantly correlated with Ang-(1-7) and Ang II levels. Logistic regression showed significant association in Ang-(1-7) and Ang II levels with INHT. Our study reveals differences in circulating RAS in individuals with INHT.


Angiotensin II , Angiotensin I , Hypertension , Peptide Fragments , Humans , Angiotensin I/blood , Female , Male , Middle Aged , Peptide Fragments/blood , Hypertension/blood , Hypertension/physiopathology , Adult , Angiotensin II/blood , Renin-Angiotensin System/physiology , Circadian Rhythm , Blood Pressure , Angiotensin-Converting Enzyme 2/blood , Blood Pressure Monitoring, Ambulatory , Peptidyl-Dipeptidase A/blood
20.
Science ; 384(6695): 563-572, 2024 May 03.
Article En | MEDLINE | ID: mdl-38696572

A molecular clock network is crucial for daily physiology and maintaining organismal health. We examined the interactions and importance of intratissue clock networks in muscle tissue maintenance. In arrhythmic mice showing premature aging, we created a basic clock module involving a central and a peripheral (muscle) clock. Reconstituting the brain-muscle clock network is sufficient to preserve fundamental daily homeostatic functions and prevent premature muscle aging. However, achieving whole muscle physiology requires contributions from other peripheral clocks. Mechanistically, the muscle peripheral clock acts as a gatekeeper, selectively suppressing detrimental signals from the central clock while integrating important muscle homeostatic functions. Our research reveals the interplay between the central and peripheral clocks in daily muscle function and underscores the impact of eating patterns on these interactions.


Brain , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/physiology , Brain/physiology , Aging/physiology , Homeostasis , Circadian Clocks/physiology , Aging, Premature/prevention & control , Circadian Rhythm/physiology , Male
...